www.a2zpapers.com

Exam. Code : 103202
Subject Code : 1309

B.A/B.Sc. Semester-II

PHYSICS

Faper-A (Relativity and Electromagnetism)

Time allr, wed- 3 Hours]
[Maximum Marks-35

Note :-i here are FIVE Sections in total. Section A is coi 2 pulsory. Attempt ONE question each from Sectic ns 13, C, D and E.
SECTION-A
I. (i) Two photons app: oach each other. What is their relative velocity?
(ii) What is Minkowski srace?
(iii) State the condition under wisich magnetic scalar potential can exist.
(iv) Calculate magnetic field at distunce of 5 cm from an infinite straight conductor car ing current of 100 A .
(v) What do you mean by displacement current ?
(vi) Define inductance and give unit of coefficient of self induction.
(vii) Can em wave propagate in a conductor ?

www. a2 zpapers.com

SECTION-B

Abstract

II. Explain mathematically, Einstein's mass-energy equivalence. Explain physical significance of this relation. Mention two nuclear phenomena supporting mis relation.

III. Discuss length contraction and time variation on the basis \sim_{\perp}^{f} Lorentz transformations.

SECTION-C

IV. (a) Compar : and contrast Biot-Savarat's law and Coloumb's law. 3
(b) What is vector poten ial ? Calculate it for a current loop at a point 5 al avay from the loop. 4
V. Derive transformation equali. ns if magnetic field from one inertial frame of referer ict to another. 7

SECTION-D

VI. State and prove Reciprocity Theorem. 7.
VII. (a) Explain the concept of displacement current and derive an expression for the same in a region where electric field is changing with time. 4
(b) What is Q-factor and find it for parallel resonant circuit ?
www.a2zpapers.com

SECTION-E

VIII.State Maxwell's equations for electromagnetism in free space, discussing each critically. What information do these equations furnish with regard to e'ectromagnetic nature of light ?
IX. I: ive an expression for reflection and transmission coefficients for em wave incident normally on the boundary of two media having different impedances.

